

Engineering a Novel Pathway for *N*-Acetylglucosamine in *E. coli* Using a Catabolic Enzyme

Bio-Technical Resources (BTR)

www.biotechresources.com

1035 S 7th Street, Manitowoc, WI 54220
Phone: (920) 684-5518
Fax: (920) 684-5519
Email: info@biotechresources.com

Metabolic Engineering for *N*-Acetylglucosamine Production in *E. coli*

Metabolic Engineering for *N*-Acetylglucosamine Production in *E. coli*

Abbreviations for Genes:

ptsG: glucose transporter

nagE: N-acetylglucosamine transporter

manXYZ: mannose transporter (also transports GlcN and GlcNAc)

pgi: phosphoglucoisomerase

pfk: phosphofructokinase

glmS: glucosamine synthase

nagB: glucosamine-6-P deaminase

nagA: N-acetylglucosamine-6-P deacetylase

GNA1: glucosamine N-acetyltransferase

glmM: phosphoglucosamine mutase

glmU: glucosamine-1-P acetyltransferase/N-acetylglucosamine-1-P uridyltransferase

Legends:

- Crosses: metabolic flux blocked by gene deletion.
- Thicker lines: introduction and/or increase of the metabolic flux by gene over-expression.
- Dotted lines: dephosphorylation and secretion of *N*-acetylglucosamine-6-P.
- Gln: glutamine, GlcN: glucosamine, GlcNAc: *N*-acetylglucosamine.

Expression of Recombinant glmS Genes in E. coli

Strain	Expression Construct	Enzyme Activity (nmol min ⁻¹ mg ⁻¹)	GlcN (mg L ⁻¹)
7107-22	pET24d(+)(control)	trace	5
7107-24	pET24d(+)/T7-B. subtilis glmS	637	128
7107-101	pET24d(+)/T7-S. cerevisae GFA1	trace	47
7107-23	pET24d(+)/T7-C. albicans GFA1	trace	23
7107-58	pET23b(+)/T7-C. albicans GFA1	trace	54
7107-214	pET24d(+)/T7-E. coli glmS	297	37
2123-12	lacZ::T7-E. coli glmS	613	75

- Glucosamine (GlcN) is detected in growth medium of shake flask cultures.
- Highest levels of enzyme activity and GlcN production with the *Bacillus glmS* gene, which encodes an enzyme resistant to inhibition by GlcN-6-P.
- GlcN production was higher with an integrated expression cassette than with a freereplicating plasmid.

GIcN Production by Over-Expressing GImS Enzymes Resistant to Product Inhibition

- Wild type *E. coli* GlmS is strongly inhibited by GlcN-6-P. Activity was 80% inhibited at 6 mM GlcN-6-P
- > Directed Evolution generated E. coli GlmS mutants resistant to product inhibition
- Strain expressing mutant enzymes produced much higher levels of GlcN than the control (wild-type enzyme) in shake flasks

GlcNAc Production by Over-Expressing GlmS and GNA1

Activity (µmol min ⁻¹ mg ⁻¹ protein) Acetate GlcNAc				GIcNAc		
Strain	Construct	GImS	GNA1	OD ₆₀₀	(g L ⁻¹)	(g L ⁻¹)
7107-88	Vector	0.53	0.1	3.75	4.4	ND*
7107-87	S. cerevisiae GNA1	0.48	19.0	7.80	ND	11.7
7107-117	C. albicans GNA1	0.36	22.3	10.00	0.5	5.1
7107-93	A. thaliana GNA1	0.32	6.0	8.70	ND	8.0

*Not detectable

- Glucosamine-6-P N-acetyltransferase (GNA1) converts glucosamine-6-P to Nacetylglucosamine-6-P (GlcNAc-6-P).
- Heterologous GNA1 genes were co-expressed with an improved glmS gene encoding product-resistant glucosamine synthase in E. coli.
- GlcNAc were produced at high levels in growth medium.

Lactose-Induced GIcNAc Production

- Efficient fermentation process was developed for GlcNAc (NAG) production using an *E. coli* strain containing integrated *T7lac-glmS*54* and *T7lac-GNA1* expression cassettes.
- Fermentation in one-liter fermentors was run in a fed batch mode. Cells were grown to an OD_{600} of about 28 and induced with lactose.
- > NAG levels in broth reached 110 g L^{-1} at 72 hrs.

Construction of *nagB* Over-Expression *E. coli* Strains

Suppression of GIcN Auxotrophy in *gImS* Mutants by *nagB* Over-Expression

- glmS deletion mutants were GlcN auxotrophs, no growth in control medium, no growth with GlcNAC due to deletion of the transporter genes nagE and manXYZ.
- NagB over-expression resulted in GlcN-6-P synthesis to support growth of *glmS* deletion mutants.
- Little or no GlcN was detected due to the catabolic nature of NagB.

Production of GlcNAc by Over-Expressing both *nagB* and *GNA1* Genes

		Enzyme Activity (µmol min ⁻¹ mg ⁻¹ protein)			GIcNAc
Strain*	Relevant Genotype	NagB	GImS	GNA1	(g L ⁻¹)
7101-17	Control	ND**	0.08	ND	ND
7107-607	T7-glmS*54 + T7-GNA1	ND	0.22	3.8	30.0
7107-660(1)	T7-nagB + T7- GNA1	2	ND	3.5	5.5
7107-660(4)	T7-nagB + T7- GNA1	42	ND	2.9	18.7
7107-661(1)	T7-nagB + T7- GNA1	52	ND	3.5	22.0
7107-661(2)	T7-nagB + T7- GNA1	62	ND	4.1	22.1
7107-661(3)	T7-nagB + T7- GNA1	58	ND	3.9	24.2

*Numbers in parentheses indicate different siblings. **Not detectable.

- Strains were grown for 72 hrs in M9B medium in shake flasks and induced with lactose from time of inoculation.
- Solution GlcNAc was produced at high levels in the medium of strains with nagB+GNA1 expressing cassettes, reaching as high as 80% of the level reached by glmS*54+GNA1 expression strain.

in vitro Synthesis of GlcN and GlcNAc

Strain	Relevant Genotype	GlcN/GlcNAc (µm ol min ⁻¹ mg ⁻¹)			
		None	NH₄⁺	Glutamine	
7107-18	T7lac-glmS*54	0	0	0.22	
7107-92	T7lac-glmS*54, T7lac-GNA1	0	0	0.31	
7107-646	T7lac-nagB	0	0.19	0	
7107-661	T7lac-nagB, T7lac-GNA1	0	0.23	0	

- Crude enzyme extracts were prepared from IPTG-induced cultures and incubated with NH₄Cl (200 mM) and glutamine (20 mM) as amino donors. Amounts of amino sugars formed were determined.
- > As expected, NagB enzyme uses only ammonia as the amino donor in GlcN-6-P formation.

Conclusions

- Over-expression of GNA1 played a critical role in determining the direction and efficiency of the upstream reaction catalyzed by NagB.
- ➤ A kinetically unfavorable enzyme could be used in constructing a desired metabolic pathway by coupling with an efficient downstream reaction.

Reference: Deng, Wassink and Grund. Enzyme & Microbial Tech. 39:828-834 (2006)

