

Strain Development Examples

Bio-Technical Resources (BTR)

www.biotechresources.com

1035 S 7th Street, Manitowoc, WI 54220

Phone: (920) 684-5518

Fax: (920) 684-5519

Email: info@biotechresources.com

Success for Strain Development

- Multiple challenges to overcome from a novel concept to a commercially viable production process
- BTR can assist you at every stage toward the success:
 - ➤ Help you in meeting particular needs at one or more stages
 - ➤ Help you in accelerating the entire process of your technology development
- Highlighted here are three examples of metabolic engineering for microbial strain development
- More examples are provided in PowerPoint slide show "Success Stories of Integrated Strain and Process Development"

Yeast Metabolic Engineering for Isoprenoid Production

- **❖ Isoprenoids:** derived from 5-carbon molecule isopentenyl pyrophosphate (IPP)
- **❖ IPP monomers are condensed to form isoprenoids of different lengths:** carotenoids, ubiquinones, steroids, precursors for vitamin synthesis, and pharmaceuticals (CoQ10)
- **BTR's focus:** production farnesol and geranylgeraniol
 - ➤ Generated Squalene Synthase mutants (*erg9*) using classical mutagenesis and screening
 - Over-expressed GGPP synthase and FPP synthase
 - > Expressed de-regulated HMG CoA reductase
 - Amplified genes for the first three steps of isoprenoid pathway
 - Achieved high level production of various isoprenoids and gained valuable insights on regulation of the pathways
- For more details, please see PowerPoint slide show "<u>Production of Farnesol and Geranylgeraniol by Strains of Saccharomyces cerevisiae</u>"

Strain and Process Development for Glucosamine Production

- * BTR internal R&D program: Develop *E. coli* strains and fermentation process for production of glucosamine
- Program highlights:
 - E. coli was metabolically engineered to increase production of glucosamine through gene knockouts and gene overexpression
 - ➤ Titers up to 18 g/L glucosamine were achieved through strain and fermentation process development
 - > Further improvement was difficult:
 - o Glucosamine is labile at neutral pH
 - o Glucosamine and its degradation products are inhibitory
 - > These challenges were overcome by a new strain development strategy:
 - Extending the pathway to NAG (*N*-acetylglucosamine)
 - NAG is a stable, and non-inhibitory derivative
 - NAG is easily hydrolyzed to glucosamine
 - The new strategy immediately resulted in a titer of 55 g/L NAG; further fermentation development resulted in titers >110 g/L within 60 hr
- * For more details, please see PowerPoint slide show "<u>E. coli Metabolic Engineering</u> for Glucosamine and *N*-Acetylglucosamine Production"

Exploring a Catabolic Enzyme to Construct a Biosynthesis Pathway

- ❖ High level *N*-acetylglucosamine production achieved previously in *E. coli* through overexpression of two biosynthesis enzymes, GlmS and GNA1:
 - ➤ GlmS (glucosamine synthase) converts fructose-6-P to glucosamine-6-P using glutamine as the amino donor
 - ➤ Yeast GNA1 (glucosamine-6-P acetyltransferase) transforms glucosamine-6-P to *N*-acetylglucosamine-6-P
- ❖ A novel pathway engineered by combination of overexpressed NagB and GNA1:
 - ➤ Glucosamine-6-P deaminase (NagB), a catabolic enzyme, breaks down glucosamine-6-P into fructose-6-P and ammonia. Its reversal reaction is kinetically unfavorable
 - ➤ GNA1 quickly removes glucosamine-6-P, driving a efficient metabolic flux through NagB, leading to high level production of *N*-acetylglucosamine
- A kinetically unfavorable catabolic enzyme can be used in constructing a desired metabolic pathway by coupling with an efficient downstream enzyme
- For details, see PowerPoint slideshow "Engineering a Novel Pathway for *N*-Acetylglucosamine Synthesis in *E. coli*"